

TABLE OF CONTENTSYOUR WATER2022 RESULTSMORE INFO

TABLE OF CONTENTS

Your Water

Your Water System
Cross-Connection Control

2022 Test Results

Possible Contaminants
Key Definitions
Water Quality Table
About Lead
PFAS
About Monitoring Waivers

More Information

Water Use Efficiency
Important Contact Information

ABOUT YOUR WATER QUALITY

Washington Water Service (Washington Water) is committed to being a leader in providing communities and customers with traditional and innovative utility services. Washington Water is proud of its service record and is staffed with courteous and knowledgeable water professionals who are dedicated to meeting your needs. While we are proud of our past record, we continually strive to improve upon the quality of services we provide to you, our valued customer.

This 2022 Drinking Water Report is your annual update on the quality and safety of your drinking water. It includes the most recent water quality results through the monitoring period ending December 31, 2022, in accordance with state and federal regulations (not all testing is required every year). This report also provides access through references and telephone numbers to source water assessments, health effects information, and other water system topics. This allows you to make personal health-based decisions regarding your drinking water consumption and become more involved in decisions which may affect your health.

Most importantly, this report shows that your drinking water source meets all primary and secondary EPA and Department of Health standards.

We hope you find this information helpful.

TABLE OF CONTENTS **YOUR WATER** 2022 RESULTS **MORE INFO**

YOUR WATER SYSTEM

WHERE YOUR WATER COMES FROM

Your water comes from two wells (groundwater). Well #1 is 166 feet deep and Well #2 is 150 feet deep.

To remove elevated levels of naturally occurring manganese present in the well water, chlorine is added to oxidize and settle out this nuisance mineral. The water is then filtered for clarity. The filtered water then passes through calcium carbonate media in the on-site corrosion control treatment facility to raise the pH and hardness of this slightly acidic groundwater. This, in turn, reduces the water's corrosivity toward household plumbing and fixtures. The system was optimized for corrosion control in 2005.

Drinking water comes from groundwater (wells and springs) and surface water (rivers, lakes, streams). Protecting these drinking water sources is key to sustaining safe drinking water supplies for this and future generations.

What you can do to protect source water:

• Ensure that your septic system is properly maintained.

SOURCE WATER PROTECTION INFORMATION.

- Use chemical fertilizers and pesticides sparingly, if at all.
- Don't dump any hazardous waste on the ground. This includes: motor oil, pesticides, paint or paint cans, mothballs, flea collars, household cleaners, medicines, etc.

Check the SWAP information for your water system:

The Washington State Department of Health Office of Drinking Water has compiled Source Water Assessment Program (SWAP) data for all community water systems in Washington. A source water assessment includes:

- A delineation (definition) of the source water protection area,
- An inventory of potential sources of contamination, and
- A susceptibility determination (how susceptible the source is to contamination).

An interactive map with data for your water system is available at: fortress.wa.gov/doh/swap/

If you have any questions, suggestions, or concerns, please contact our office, either by phone at (877) 408-4060 or through the Contact Us link at www.wawater.com.

MORE INFO

CROSS-CONNECTION CONTROL

Imagine a water customer has a hose in their hot tub to fill it up. If the customer doesn't have a backflow preventer and the water system experiences a drop in pressure, water from the hot tub could be pulled into the water system and contaminate the water supply.

To ensure that the high-quality water we deliver is not compromised in the distribution system, Washington Water has a robust cross-connection control program in place. Cross-connection control is critical to ensuring that activities on customers' properties do not affect the public water supply. Our cross-connection control specialists ensure that all of the existing backflow prevention assemblies are tested annually, assess all connections, and enforce and manage the installation of new commercial and residential assemblies.

Backflow can occur when certain pressure conditions exist either in our distribution system or within the customer's plumbing, so our customers are our first line of defense. A minor home improvement project—without the proper protections—can create a potentially hazardous situation, so careful adherence to plumbing codes and standards will ensure the community's water supply remains safe. Please be sure to utilize the advice or services of a qualified plumbing professional.

Many water-use activities involve substances that, if allowed to enter the distribution system, would be aesthetically displeasing or could even present health concerns. Some common cross-connections are:

- Garden hoses connected to a hose bib without a simple hose-type vacuum breaker (available at a home improvement store)
- Improperly installed toilet tank fill valves that do not have the required air gap between the valve or refill tube
- Landscape irrigation systems that do not have the proper backflow prevention assembly installed on the supply line

The list of materials that could potentially contaminate the water system is vast. According to the EPA, a wide variety of substances have contaminated drinking water systems throughout the country as a result of poor cross-connection control. Examples include:

- Antifreeze from a heating system
- Lawn chemicals from a garden hose or sprinkler head
- Blue water from a toilet tank
- Carbonated water from a soda dispenser

Customers must ensure that all plumbing is in conformance with local plumbing codes. Additionally, state law requires certain types of facilities to install and maintain backflow prevention assemblies at the water meter. Washington Water's cross-connection control staff will determine whether you need to install a backflow prevention assembly based on water uses at your location.

TABLE OF CONTENTS YOUR WATER

O 2022 RESULTS
MORE INFO

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants.

The presence of contaminants does not necessarily indicate that the water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

The sources of drinking water (both tap and bottled) include rivers, lake, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals—and in some cases radioactive material—and can pick up substances resulting from the presence of animals or human activities. Prior to entering the distribution system, source water with constituents over maximum contaminant levels is treated to reduce levels to meet standards set by public health experts.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial contaminants, such as viruses, parasites, and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Organic chemical contaminants, including synthetic and volatile organic compounds, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

In order to ensure that tap water is safe to drink, the Washington State Department of Health (DOH) and EPA prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Washington State Department of Agriculture regulations establish limits for contaminants in bottled water that must provide the same protection for public health.

VULNERABLE POPULATIONS

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

MORE INFO

ACTION LEVEL (AL): The concentration of a contaminant which, when exceeded, triggers treatment or other requirements which a water system must follow.

LEAD AND COPPER 90TH PERCENTILE VALUE: Out of every 10 homes sampled, 9 were at or below this level. This must be less than or equal to the AL or additional steps must be taken.

MAXIMUM CONTAINMENT LEVEL (MCL): The highest level of a contaminant allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MAXIMUM CONTAMINANT LEVEL GOAL (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MMHOS/CM: A measure of specific conductance.

MAXIMUM RESIDUAL DISINFECTANT LEVEL (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MAXIMUM RESIDUAL DISINFECTANT LEVEL GOAL (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

N/A: Not applicable.

NOT DETECTED (ND): The result is less than the SDRL.

NEPHELOMETRIC TURBIDITY UNIT (NTU): A measure of water clarity.

PPB: Parts per billion (µg/L, micrograms per liter)

PPM: Parts per million (mg/L, milligrams per liter)

STATE DETECTION REPORTING LIMIT (SDRL): The minimum reportable detection of an analyte as established by DOH. If the test result is less than the SDRL, the contaminant is considered to be not detected.

SECONDARY MAXIMUM CONTAMINANT LEVEL (SMCL): These standards are developed as guidelines to protect the aesthetic qualities of drinking water and are not health based.

Your water is tested for more than 150 contaminants for which state and federal standards have been set.

Tables 1 & 2 list all primary contaminants that were detected at or above the state detection reporting limit (SDRL), along with their respective MCLs. Primary MCLs (primary standards) protect public health by limiting the levels of these contaminants in drinking water.

Table 3 lists secondary contaminants of interest to many consumers, as well as any unregulated contaminant detections. Secondary contaminants have no known health effects but can affect the aesthetic properties of water (taste, odor, and appearance). Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to help EPA determine their occurrence in drinking water and potential need for future regulation.

See the **Potential Contaminants** web page for a complete list of contaminants we test for.

SOURCE CODES

The source codes indicate major sources of contaminants in drinking water.

AIM Water additive used to optimize iron and manganese removal treatment and control microbes

BD Byproduct of drinking water disinfection

CH Corrosion of household plumbing systems

DMD Discharge from metal degreasing sites and other factories

EN Erosion of natural deposits

LN Leaching from natural deposits

LX Leaching from septic tanks

NAT Substances that form natural deposits

NOM Naturally occurring organic materials

RF Runoff from fertilizer use

RLN Runoff/leaching from natural deposits

RS Soil runoff

SEA Seawater influence

SEW Sewage

WI Industrial wastes

Equipment in water-testing laboratories can detect constituents as small as 1 part per trillion. That is equivalent to 1 inch over 15 million miles.

2022 WATER QUALITY

Table 1: Primary Contaminants

Inorganic Chemicals	Year Tested	Units	MCL	MCLG	Your Water		Violation?	Source
Nitrate	2022	ppm	10	10	2.3		No	EN, LX, RF, SEW
Volatile Organic Chemicals ¹	Year Tested	Units	MCL	MCLG	Your Water		Violation?	Source
Chloroform	2022	ppb	5	0	0.55		No	DMD
Bromodichloromethane	2022	ppb	5	0	0.95		No	DMD
Dibromochloromethane	2022	ppb	5	0	0.82		No	DMD
Total Trihalomethane	2022	ppb	5	0	2.3		No	DMD
Disinfectant (an additive)	Year Tested	Units	MRDL	MRDLG	Highest Running Average	Range	Violation?	Source
Free Chlorine Residual ²	2022	ppm	4	4	0.77	0.22-1.13	No	AIM
Disinfection Byproducts	Year Tested	Units	MCL	MCLG	Your Water		Violation?	Source
Total Trihalomethanes (TTHM)	2022	ppb	80	N/A	3		No	BD
Haloacetic acids (HAA5)	2022	ppb	60	N/A	ND		No	BD

Table 2: Lead and Copper³

Primary Contaminants	Year Tested	Units	AL	90 th Percentile	Samples > AL	Violation?	Source
Copper	2020	ppm	1.3	0.15	0 of 10	No	CH, EN
Lead	2020	ppb	15	ND	0 of 10	No	CH, EN

- 1 These are normal disinfection byproducts which result from chlorination.
- 2 Compliance with the MRDL is based on the highest running annual average (RAA), not any single residual result.
- 3 Samples are collected at customer kitchen or bathroom taps. Residences considered to be at highest risk for corrosion are selected for sampling (i.e., those with lead and copper in internal plumbing, based on specific EPA tiering criteria and available home construction details from county web sites). The number of homes sampled is based on population served by the water system. This testing is done every three years.

MORE INFO

2022 WATER QUALITY (Continued)

Table 3: Secondary and Unregulated Contaminants

Secondary Contaminants	Year Tested ¹	Units	SMCL	Your Water	Violation?	Source
Iron	2022	ppm	0.3	ND	No	LN, WI
Manganese	2022	ppm	0.05	ND	No	LN
Chloride	2020	ppm	250	6.8	No	RLN, SEA
Sulfate	2020	ppm	250	3.9	No	RLN, WI
Sodium ²	2020	ppm	N/A	7.7	No	EN, SEA
Hardness ³	2020	ppm	N/A	94	No	EN
Conductivity	2020	µmhos/cm	700	211	No	NAT, SEA
Turbidity	2020	NTU	N/A	0.9	No	RS
Color	2020	color units	15	ND	No	NOM
Unregulated Contaminants	Year Tested	Units	SMCL	Your Water	Violation?	Source
Lead	2020	ppb	N/A	ND	No	CH, EN
Copper	2020	ppm	N/A	ND	No	CH, EN

¹ Most recent testing done. This testing is done every three years.

² The EPA recommends 20 ppm sodium as a level of concern for consumers who must restrict their dietary intake.

³ When reading the hardness value, 0–75 ppm is considered "soft" water, 75–150 ppm is "moderately hard," 150–300 ppm is "hard," and > 300 ppm is "very hard."

MORE INFO

Washington Water is compliant with health and safety codes mandating use of lead-free materials in water system replacements, repairs, and new installations. We have no known lead service lines in our systems. We test and treat (if necessary) water sources to ensure that the water delivered to customer meters meets water quality standards and is not corrosive toward plumbing materials.

The water we deliver to your home meets lead standards, but what about your home's plumbing? In Washington state, lead in drinking water comes primarily from materials and components used for in-home plumbing (for example, lead solder used to join copper plumbing, and brass and other lead-containing fixtures). Therefore, the Lead and Copper Rule is a critical part of our water quality monitoring program, and we follow it completely. This rule requires us to test water *inside* a representative number of homes that have plumbing most likely to contain lead and/or lead solder. This test, along with other water quality testing, tells us if the water is corrosive enough to cause lead from home plumbing to leach into the water. If the Action Level (the concentration of a contaminant which, when exceeded, triggers action which a water system must follow before it becomes a health concern) is exceeded, either at a customer's home or system-wide, we work with the customer to investigate the issue. If the problem is system-wide, we will implement corrosion control treatment at the source before the lead levels create a health issue.

Elevated levels of lead, if present, can cause serious health problems, especially for pregnant women and children. If your home's plumbing contains lead piping or pipe fittings, lead solder, or brass fixtures that may contain lead, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested by a certified lab. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Results of our lead monitoring program, conducted in accordance with the Lead and Copper Rule, can be found in Water Quality Tables 2 and 3.

TABLE OF CONTENTS YOUR WATER

2022 RESULTS

MORE INFO

Per- and polyfluoroalkyl substances (PFAS) are manmade compounds that have been used to make carpets, clothing, fabrics for furniture, paper packaging for food, and other materials (e.g., cookware) that are resistant to water, grease, or stains. These compounds are also used for firefighting at airfields, which is one way they have found their way into groundwater in certain areas.

In March 2023, EPA issued a proposed national primary drinking water regulation for certain PFAS. The proposed regulation calls for a maximum containment level for PFOS and PFOA of 4 ppt each. Four additional PFAS—PFNA, PFHxS, PFBS, and GenX— would have a combined hazard index limit of 1.0; the hazard index calculation would determine if the levels of these PFAS as a mixture pose a potential risk.

We believe a comprehensive approach is needed to properly address the situation. We urged the EPA to establish a consistent, science-based standard as quickly as feasible, and strongly supported state legislation that will prohibit the sale and use of certain products that contain PFAS, require the certification of accurate testing methods for PFAS, and establish a publicly accessible database that houses the sources of PFAS entering water supplies.

Washington Water is currently testing every well in every one of our water systems for PFAS compounds. We expect to have all wells tested by the end of 2023. If we find PFAS, we will take appropriate action to protect the health of our customers and include results in our 2023 water quality report.

Studies indicate that long-term exposure to PFAS over certain levels could have adverse health effects, including developmental effects to fetuses during pregnancy or infants; cancer; or impacts on liver, immunity, thyroid, and other functions. Potential health effects related to PFAS are still being studied, and research is still evolving on this issue.

While we are doing our part to treat the water and meet the standards public health experts have set, it's important that our population as a whole focuses on being good stewards of the environment and takes steps to prevent impacting the water supply.

MORE INFO

ORGANIC COMPOUNDS

Drinking water sources are sampled and tested a minimum of every six to nine years for an array of organic compounds including:

- Volatile organic compounds (VOCs): Human-made chemicals that are used and produced in the manufacture of paints, pharmaceuticals, and refrigerants.
 Typical VOCs are components of petroleum fuels, paint thinners, and dry cleaning agents.
- Synthetic organic compounds (SOCs): Human-made chemicals that are used as herbicides, pesticides ,and in the manufacture of plastics.

Sampling frequencies for these groups of organic compounds can vary depending on the county in which your water system is located, whether the source has been granted a monitoring waiver, and whether there have been past detections of any of these organic contaminants.

Monitoring waivers are granted by the DOH and are based on a source's susceptibility rating (risk of contamination), water quality history, and information gathered from across the state.

If there were detections of organic contaminants obtained during the most recent round of compliance monitoring (2016–2021 for VOCs; 2013–2021 for SOCs), they are shown in the water quality data tables. If there are none reported in the tables, there were none detected.

RADIOACTIVE CONTAMINANTS

Drinking water sources are sampled and tested a minimum of every six years for radioactive contaminants (radium 228 and gross alpha). These contaminants can be naturally occurring or the result of oil and gas production and mining activities.

If there were any detections obtained during the most recent round of compliance monitoring (2016–2021), they are shown in the water quality data tables. If there are none reported in the tables, there were none detected.

TABLE OF CONTENTS YOUR WATER

2022 RESULTS
MORE INFO

Water is a precious, limited resource. In the Pacific Northwest, drinking water for our growing population competes with other uses that include agriculture, industry, recreation, and maintaining an adequate stream flow for fish.

Washington Water strives to be a leader in the water industry, and we encourage our customers to be good stewards of our water resources. We monitor the amount of water we withdraw from aquifers in Washington, and track water losses along with water sold to our customers to ensure compliance.

Washington Water also continues to invest diligently in our infrastructure to reduce the amount of water lost to pipeline leaks and are updating our assessment of the impacts of climate change on water supply and demand. Using water wisely will ensure that we have enough water in dry years and for generations to come.

Water-use efficiency goals are established in accordance with WAC 246-290-830(6)(b).

DEMAND GOAL

Washington Water's company-wide water demand goal is an annual customer consumption of less than 117,300 gallons (or 0.36 acre feet) per year, per equivalent residential unit. Washington Water monitors demand and encourages conservation through a variety of resources. Washington Water's Customer Service Department alerts customers with unusually high consumption, and provides 13 months of consumption history on billing statements to all customers. See www.wawater.com/conservation for more information about how you can make a difference.

SUPPLY GOAL

To control use of our groundwater sources, Washington Water established a supply goal to withdraw a maximum of 130,340 gallons (or 0.40 acre feet) per year, per equivalent residential unit. This goal is a measure of operational efficiency and adequate maintenance of pumping, treatment, and distribution systems. The difference between the supply and demand goals allows for a maximum of 10% total distribution system leakage use company-wide. Washington Water gauges and records monthly source production, and identifies treatment backwash and system flushing volumes to regularly assess supply-side conservation efficiencies. Washington Water also annually evaluates our systems' water main repair history and distribution system water losses to develop capital improvement projects for water main replacements. See www.wawater.com/construction for current and recently completed main replacement projects.

COMPANY-WIDE 2022 WATER USE RESULTS

• Total production: 3.97 billion gallons

• Total accounted usage: 3.36 billion gallons

• Total distribution system leakage: 18.5%

MORE INFO

Thanks for taking the time to learn more about your water quality!

IMPORTANT CONTACT INFORMATION

Washington Water Service

P.O. Box 336

Gig Harbor, WA 98335-0336

Office: (253) 851-4060 Toll Free: (877) 408-4060

www.wawater.com Shawn O'Dell

Operations Manager

Washington State Department of Health Northwest Drinking Water Operations

Building 2, Suite 310 Kent, WA 98032-2388

(253) 395-6750

www.doh.wa.gov/ehp/dw

Quality. Service. Value.

OUR WATER QUALITY COMMITMENT: YOU CAN COUNT ON WASHINGTON WATER EMPLOYEES TO...

- Provide you with the highest quality water possible
- Sample, test, and treat (if needed) your water on a regular basis
- Work diligently to meet every water quality standard on every system, every day
- Maintain the water distribution system reliability
- Provide you with the highest level of customer service possible

